
Home > 8 ShellManager API Guide: Integration with External Systems

8 ShellManager API Guide: Integration with External Systems

Introduction
Requirements

Introduction

This document describes Web Service Interface (WSI), which is a ShellManager API and data schema for exchanging orders between
ShellManager and third-party software, e.g. an ERP system.

A production environment without WSI requires orders to be created twice, first in the customer's ERP system and then in RegClient. To
avoid this redundancy, using WSI can automate this process, enabling the ERP system to transfer orders to ShellManager automatically.

WSI is an extension to ShellManager, allowing orders to be submitted and retrieved by external systems. It encapsulates the core
ShellManager database, thus enabling future upgrades of ShellManager, EarMouldDesigner and ShellDesigner with minimum impact.

Requirements

WSI can be installed as a Windows service or as an application under Internet Information Services (IIS) (see the chapter Audio Data
Services Setup). To be able to install and run WSI, the following applications and components are required:

l ShellManager

l Microsoft IIS 6.0 (7.0 or higher recommended)

l Windows Server 2003/2008/2012 or Windows 7/8/8.1 (32-bit/64-bit)

See also:
WSI, Structure, Input and Output, Command List
External IDs, WSI Callbacks and Error Codes

Home > 8 ShellManager API Guide: Integration with External Systems > 8.1 WSI, Structure, Input and Output, Command List

8.1 WSI, Structure, Input and Output, Command List

About WSI
Accessing WSI
Structure of WSI
Input Commands
Output Results
Command-Result Examples
Command List

About WSI

Orders are created and handled in the customers own ERP/Order system (e.g. Navision, SAP, Bespoke, etc.) and sent to the ShellManager
through the order interface. ShellManager controls the actual daily engineering and manufacturing of hearing instruments via scanning,
modelling, printing, milling, reporting, quality control and mounting. At any time the ERP/order system can retrieve the details and current
status of the orders.

Technically, the API consists of the Web Service Interface (WSI) application (.NET application) hosted either on Microsoft Internet
Information Server or as a Windows service. WSI acts like a proxy between ShellManager and third-party systems and allows the interaction
between them. WSI directly interfaces with ShellManager Audio Data Services.

WSI has a single page for processing commands (http://<server>:<port>/WSIQueryService/ProcessCommandsPage) that takes an input
XML string as a parameter and returns an output XML string as a result.

The input XML must be valid to the Commands.xsd schema. The result XML must be valid to the Results.xsd schema. Please find additional
information about input commands and resulting XML described in Commands.xsd and Results.xsd schema files, both located in the
C:\Program Files\3Shape\AudioDataServices\Implementation\XSD folder.

The input XML string sent to WSI can contain a set of commands, e.g. you can specify three commands, with the result containing answers
for all three. The returned XML string contains the results of the operation. Supported operations can be categorized into the following:

l Orders (create, read, update, remake and delete)

l Groups (create, close and open)

l List (get lists of models, vents, wax guards, faceplates, etc.)

To distinguish commands (and corresponding results), the ID attribute of Command type (see the Commands.xsd schema file) must be used.
Set ID to 1 for the first command, 2 for the second and so on, and between returned results, you will need to find the one with ID equal to 1,
2 respectively.

Note: The XML schemas used in WSI have been made according to W3C standards. For introduction to XML schemas, we suggest
reading chapters 1-3 of this W3C manual: http://www.w3.org/TR/xmlschema-0/.

Page 1 of 11ShellManager API Guide: Integration with External Systems

29/05/2018file:///C:/Users/Oles%20Galatsan/AppData/Local/Temp/~hh2AE3.htm

ShellManager integration connectivity diagram

Accessing WSI

Web Service Interface is accessed through different URLs depending on the protocol used:

l [HTTP GET]: http://<server>:<port>/WSIQueryService/ProcessCommandsViaGet?inputString=string

l [HTTP POST]: http://<server>:<port>/WSIQueryService/ProcessCommandsViaPost

l To access WSI via SOAP, use the following link: http://<server>:<port>/WSIService/ProcessCommands.

If you want to use WSDL (http://<server>:<port>/WSIService/ProcessCommands?WSDL), you need to do the following steps if you have
installed Audio Data Services as a Windows service:

 Step 1: Stop 3Shape Audio Data Services in Windows Services.

 Step 2: Open the configuration file (AudioDataServices.exe.config) of Audio Data Services, which is located in the installation folder of
Audio Data Services.

 Step 3: Change the value of EnableWSDL to true: <add key="EnableWSDL" value="true"/>.

ShellManager server PC

WSI

HTTP POST call
Commands.xsd

PC with 3-rd
party
ERP/order
system

Results.xsd

PC with
ShellManager
client
applications

Audio Data
Services

Database

Configuration file

1) AudioDataServices.exe.config

in case of Windows service
installation

2) Web.config in case of IIS
installation

Note: The inputString parameter must contain XML text (see Structure of WSI below).

Warning: All software supporting the GET method used to have limits for query size. That means that if you have very large query,
your call may fail. Please refer to the corresponding manual of the software you use to know the exact limit value.

Note: The command must have a single parameter called inputString that must contain XML text (see Structure of WSI below).

Page 2 of 11ShellManager API Guide: Integration with External Systems

29/05/2018file:///C:/Users/Oles%20Galatsan/AppData/Local/Temp/~hh2AE3.htm

 Step 4: Make sure the <server> has the name or IP address of the machine where Audio Data Services is installed instead of
http://localhost.

 Step 5: Save the changes.

 Step 6: Restart 3Shape Audio Data Services in the Windows Services.

 Step 7: If you have installed Audio Data Services as an application under Internet Information Services (IIS), you also need to enable
WSDL in the Web.config file which is located in the root folder C:/Program Files/3Shape/AudioDataServices.

l To access WSI from the browser (mainly for debugging purposes), use the following link:
http://<server>:<port>/WSIQueryService/ProcessCommandsPage.

The server and port parameters are the host and the port of Audio Data Services.

Structure of WSI

The communication interface consists of XML request-and-response messaging structure. Both XML messages have the root element
<OrderInterface>, which encapsulates either the command list as the input or a result list as the output.

The root element <OrderInterface> has the attributes version and type. The version attribute indicates the version of the order interface.
The type attribute can be either "Input" or "Output". The type "Input" implies a command and the type "Output" implies a result.

Below is an example of an input XML string. This string does not contain any commands, only the basic input XML structure:

<?xml version="1.0" ?>
<OrderInterface version="1.0" type="Input" xmlns="http://3shape.com/ThreeShape.HI.Manager.OrderInterface/Commands.xsd">
 <CommandList></CommandList>
</OrderInterface>

The format of the input XML string is defined in the Commands.xsd schema (see About WSI above), and it must be referenced in the root
element of the input string.

The input XML string is validated against the Commands.xsd schema. So if validation of the input XML string fails, an error is returned with a
message element, but with no <ResultList> element in the output XML string.

Below is the example of an output XML string. This string would be the result of the above input string. The Results.xsd schema contains the
format of the output XML string. Reading the Results.xsd schema (see About WSI above) will provide you with detailed specification of the
output XML strings:

<?xml version="1.0" encoding="utf-16"?>
<OrderInterface version="1.0" type="Output" xmlns="http://3shape.com/ThreeShape.HI.Manager.OrderInterface/Results.xsd">
 <ResultList></ResultList>
</OrderInterface>

Input Commands

The input XML string has the command list which can handle any number of commands. A command must contain both a command identifier
and an id attribute:

<CommandReadOrder id="3435">.

The command identifier indicates which type of operation needs to be carried out. This could be ReadOrder, like in the example above, which
will try to read out an order with a specified order ID (not the id attribute of the command). The id attribute is required for identifying one
command from another when executing several simultaneous commands. By setting an id attribute (this should be unique within an XML
string), the corresponding result element will then have the same id attribute (see Output Results below).

Below is the example of a simple command element which deletes the order with the order ID 23040:

<CommandDeleteOrder" id="3441">
 <OrderID>23040</OrderID>
</CommandDeleteOrder >

Detailed specification of commands and elements in each command can be found the in the Commands.xsd schema (see About WSI above).

Output Results

The output XML string contains a result list, with as many results as there were commands in the input XML string. The basic attributes of a
result are id and success:

<Result success="true" id="3437">

The id attribute of the result is the same as in the corresponding command. If the operation of the command was successful, the success
attribute returns "true", if not - "false". For example, if you try to read an order which does not exist, the success attribute would return
"false".

Note: This way uses HTTP POST method.

Page 3 of 11ShellManager API Guide: Integration with External Systems

29/05/2018file:///C:/Users/Oles%20Galatsan/AppData/Local/Temp/~hh2AE3.htm

Below is an example of a complete result element (could be the result for the <CommandDeleteOrder>).

<Result success="true" id="3434">
</Result>

All result elements can also contain a message element and an error code, which is more descriptive than just true or false.

Detailed specification of results and elements in each result can be found in the Results.xsd schema (see About WSI above).

Command-Result Examples

Example 1: CommandDeleteOrder

Input:

<?xml version="1.0"?>
<OrderInterface xmlns="http://3shape.com/ThreeShape.HI.Manager.OrderInterface/Commands.xsd" type="Input" version="1.0">
 <CommandList>
 <CommandDeleteOrder id="1">
 <GroupID>707</GroupID>
 <OrderID>707</OrderID>
 </CommandDeleteOrder>
 </CommandList>
</OrderInterface>

Result:

<?xml version="1.0" encoding="UTF-16"?>
<OrderInterface xmlns="http://3shape.com/ThreeShape.HI.Manager.OrderInterface/Results.xsd" type="Output" version="1.0">
 <ResultList>
 <Result success="true" id="1"></Result>
 </ResultList>
</OrderInterface>

Conclusion:

Command with ID 1 has been successfully performed.

Example 2: CommandGetColorList

Input:

<?xml version="1.0"?>
<OrderInterface xmlns="http://3shape.com/ThreeShape.HI.Manager.OrderInterface/Commands.xsd" type="Input" version="1.0">
 <CommandList>
 <CommandGetColorList id="1"></CommandGetColorList>
 </CommandList>
</OrderInterface>

Result:

<?xml version="1.0" encoding="UTF-16"?>
<OrderInterface xmlns="http://3shape.com/ThreeShape.HI.Manager.OrderInterface/Results.xsd" type="Output" version="1.0">
 <ResultList>
 <Result success="true" id="1">
 <ColorList>
 <Color>
 <ID>23</ID>
 <Name>Red</Name>
 </Color>
 <Color>
 <ID>24</ID>
 <Name>Orange</Name>
 </Color>
 <ColorList>
 </Result>
 </ResultList>
</OrderInterface>

Conclusion:

List of two colors (red and orange) has been returned for the command with ID 1.

Command List

Command Description

CommandAddOrderAttachment Adds attachment files to the specified order.

CommandCheckLogin Checks if the given user/password is defined on the server.

CommandCloseGroup Closes the group.

Page 4 of 11ShellManager API Guide: Integration with External Systems

29/05/2018file:///C:/Users/Oles%20Galatsan/AppData/Local/Temp/~hh2AE3.htm

CommandCopyScans Copies scan and modelling data.

CommandCreateDispenser Creates a new dispenser.

CommandCreateGroup Creates a new group.

CommandCreateOrder Creates a new order.

CommandCreateOrUpdateOrder Creates an order. If the order already exists, then updates it with data from the command input.

CommandDeleteAllOrderAttachments Deletes all attachments from the order.

CommandDeleteOrder Deletes the order.

CommandDeleteOrderAttachment Deletes a single attachment or specific collection of attachments from the order.

CommandEarLocked Checks if a certain ear is locked.

CommandErrorMark New Assigns or cancels the Error Mark property as well as Error Message of the shell by specifying Group
ID, External Order ID, External Shell ID and External Error Code.

CommandFinalizeGroup Finalizes an existing group.

CommandGetAllOrderAttachments Gets all attachments of the order.

CommandGetColorList Gets the list of colors.

CommandGetCreatedOrderList Gets the list of orders created in a specific period of time.

CommandGetCustomFieldList
Retrieves the list of custom fields. Each result item contains ID, Name and Type. The fields in the list
will also include entries. The Restriction (for entries) can also be set when calling this command (see
the CommandWithRestriction type for details on Restriction).

CommandGetDispenserList Gets the list of dispensers.

CommandGetErrors New
Retrieves the list of errors by specifying a Group ID and External Order ID. The <IncludeHandled>
tag can be used to specify whether or not to include already handled errors. The tag accepts boolean
values: "true" or "false". The default value is "false".

CommandGetFaceplateList Gets the list of faceplates.

CommandGetGroupList Gets the list of groups.

CommandGetModelList Gets the list of available models.

CommandGetOffsetTemplateList Gets the list of offset templates.

CommandGetOptionalComponentList Gets the list of optional components (e.g. amplifier, telecoil, etc.).

CommandGetOrderList Gets the list of orders from a specific group.

CommandGetOrdersShortInfo
Gets the list of order information details for all orders in a specific group. Each entry in the list
corresponds to a single order, so for binaural orders there will be two entries.

CommandGetScan Retrieves the scan of particular type from the order.

CommandGetShapeList Gets the list of shapes.

CommandGetShellSizeList Gets the list of shell sizes.

CommandGetSites Gets the list of sites registered in the system.

CommandGetSoundboreList Gets the list of soundbores.

CommandGetStatusList Gets the list of available status codes.

CommandGetTransducerList Gets the list of transducers.

CommandGetVentList Gets the list of available vent types.

CommandGetVersionNumber Gets the version number of the software.

CommandGetWaxList Gets the list of available wax guards.

CommandLockEar Requests to lock or unlock the given ear (depends on the lock parameter value).

CommandMoveOrderToGroup Moves the order to the specified group. Order files are also moved in the production folder.

CommandOpenGroup Opens the group that is closed.

CommandQueryCreateOrder Tests if the order can be created.

CommandReadOrder Reads the order.

CommandRemakeOrder Creates a remake of the existing order. Any parameters not supplied will be inherited from the
original order. The optional RemakeCodeID field added.

CommandSaveScan Saves the order with scan data.

CommandScanExists Checks if a scan of specific type exists in the order.

CommandSearch Searches for orders that match specific conditions.

CommandSiteExists Returns true if the specified site is registered in the system.

CommandTransferOrder Sends the order to the remote site.

CommandReturnOrder Retrieves the order back to its original site.

CommandUpdateOrder
Updates the existing order. PrintJobName, PrintJobType and PrintName information is provided in
the callback data after the order status is changed to PRINTED.

Page 5 of 11ShellManager API Guide: Integration with External Systems

29/05/2018file:///C:/Users/Oles%20Galatsan/AppData/Local/Temp/~hh2AE3.htm

See also:
External IDs, WSI Callbacks and Error Codes

Home > 8 ShellManager API Guide: Integration with External Systems > 8.2 External IDs, WSI Callbacks and Error Codes

8.2 External IDs, WSI Callbacks and Error Codes

External IDs
WSI Callbacks
Error Codes

External IDs

All external access to materials is done through external IDs. All items in the ShellManager system that you wish to access through WSI
should have external IDs created. A list of the reference keys is shown below, which must be set up for all selectable options. If an option
has no defined reference value, it cannot be selected and the call will fail.

This is managed in Control Panel by going to Materials > Models:

Reference key Control Panel Attribute name

DispenserID ShellManager/Dispensers Reference

CategoryID Materials/Categories External ID

ModelID Materials/Models External ID

SizeID Materials/Sizes External ID

FaceplateID Materials/Faceplate systems External ID

VentID Materials/Vents External ID

WaxID Materials/Wax guards External ID

TransducerID Materials/Transducers External ID

OptionalComponentID Materials/Optional components External ID

ShapeID Materials/Shapes External ID

SoundboreID Materials/Sound bores External ID

Page 6 of 11ShellManager API Guide: Integration with External Systems

29/05/2018file:///C:/Users/Oles%20Galatsan/AppData/Local/Temp/~hh2AE3.htm

Models setup using the External ID attribute

WSI Callbacks

In order for a third-party system (i.e. ERP, order handling system) to be informed on status changes, a callback function is available.

When an order change takes place, an event notification is sent as an HTTP call to the preconfigured URLs. These sites should be created in a
specific section of Audio Data Services configuration file. The name of the configuration file depends on the way Audio Data Services has
been installed (see the chapter Audio Data Services Setup). If it is installed as a Windows service, then the file name is
HostApplication.exe.config. In case when Audio Data Services is installed as an application under Internet Information Services (IIS), the file
name will be Web.config. The configuration file can be found in the folder C:/Program Files/3Shape/AudioDataServices:

<callbackUrls>
 <add name=”TestSite1” url=”www.mysite1.com/path1” />
 <add name=”TestSite2” url=”www.mysite2.com/some path” />
</callbackUrls>

The following table shows lists of callbacks resulted from WSI commands:

Command List of resulting callbacks

CommandCreateOrder

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=OrderCreate
UserID=ERP

CommandCreateOrUpdateOrder

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=OrderChange

Page 7 of 11ShellManager API Guide: Integration with External Systems

29/05/2018file:///C:/Users/Oles%20Galatsan/AppData/Local/Temp/~hh2AE3.htm

UserID=ERP

CommandDeleteOrder

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=OrderDelete
UserID=ERP

CommandRemakeOrder

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=OrderCreate
UserID=ERP

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=RemakeCreate
UserID=ERP

CommandTransferOrder

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=TransferToRemoteSite
UserID=ERP

CommandUpdateOrder

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=StatusChange
EarID=< EarID >
EarSide=LEFT
UserID=ERP
OldStatus=< OldStatus >
NewStatus=< NewStatus>

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=OrderChange
UserID=ERP

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=StatusChange
EarID=< EarID >
EarSide=RIGHT
UserID=ERP
OldStatus=< OldStatus >
NewStatus=< NewStatus>

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=OrderChange
UserID=ERP

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=OrderChange
UserID=ERP

CommandReturnOrder

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=OrderChange
UserID=< UserID >/ERP

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=TransferFromRemoteSite
UserID=ERP

CommandErrorMark

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=OrderErrorMark
EarID=< EarID >
EarSide=LEFT
ErrorDescription=< ErrorDescription >
ErrorCode=< ErrorCode ID>

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=OrderErrorMark
EarID=< EarID >

Page 8 of 11ShellManager API Guide: Integration with External Systems

29/05/2018file:///C:/Users/Oles%20Galatsan/AppData/Local/Temp/~hh2AE3.htm

The following table shows lists of callbacks resulted from manual operations:

EarSide=RIGHT
ErrorDescription=< ErrorDescription >
ErrorCode=< ErrorCode ID>

Action List of resulting callbacks

Create order in RegClient

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=OrderCreate
UserID=< UserID >

Modify order details in RegClient

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=OrderChange
UserID=<UserID>

Create Remake in RegClient

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=OrderCreate
UserID=<UserID>

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=RemakeCreate
UserID=<UserID>

Delete order in RegClient

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=OrderDelete
UserID=< UserID >

Approve order using the Approve button in ModelClient

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=StatusChange
EarID=< EarID >
EarSide=LEFT
UserID=< UserID >
OldStatus=< OldStatus >
NewStatus=< NewStatus>

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=OrderChange
UserID=< UserID >

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=StatusChange
EarID=< EarID >
EarSide=RIGHT
UserID=< UserID >
OldStatus=< OldStatus >
NewStatus=< NewStatus>

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=OrderChange
UserID=< UserID >

Approve order after modelling in the approve/disapprove dialog

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=OrderChange
UserID=< UserID >

Error mark order in ModelClient in the approve/disapprove dialog

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=OrderErrorMark
EarID=< EarID >
EarSide=LEFT
ErrorDescription=< ErrorDescription >
ErrorCode=< ErrorCode ID>

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=OrderErrorMark

Page 9 of 11ShellManager API Guide: Integration with External Systems

29/05/2018file:///C:/Users/Oles%20Galatsan/AppData/Local/Temp/~hh2AE3.htm

Each callback uses the GET method. For example, a callback URL: www.mysite1.com/path1 will be translated into a callback URL string:
www.mysite1.com/path1?param1=value1¶m2=value2.

The destination site should then parse the URL string and interpret the relevant event and its appropriate parameters:

EarID= <EarID>
EarSide=RIGHT
ErrorDescription=< ErrorDescription >
ErrorCode=< ErrorCode ID>

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=OrderChange
UserID=< UserID >

Error mark order in RegClient

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=OrderErrorMark
EarID=< EarID >
EarSide=LEFT
ErrorDescription=< ErrorDescription >
ErrorCode=< ErrorCode ID>

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=OrderErrorMark
EarID=< EarID >
EarSide=RIGHT
ErrorDescription=< ErrorDescription >
ErrorCode=< ErrorCode ID>

SWIFT order from RegClient

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=TransferToRemoteSite
UserID=<UserID>

Return order from remote site

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=OrderChange
UserID=< UserID >

SiteID=< SiteID >
OrderID=< OrderID >
TimeStamp=<YYYY-MM-DD HH:MM:SS>
EventType=TransferFromRemoteSite
UserID=< UserID >

Note: All resulting callbacks are shown for binaural orders. In case of a monaural order or if sides have different properties (for
example, in the Approve/Disapprove dialog), callback will describe actions, if any, for each side.

Parameter Description Type Example

OrderID Internal order ID Alphanumeric (JournalExtID) 113

EarID External order ID Alphanumeric (ShellExtID) 133

EarSide Side of ear Alphanumeric (LEFT or RIGHT) RIGHT

ErrorDescription Error mark message Alphanumeric Vent is placed
incorrectly

ErrorCode External ID error code Alphanumeric Minor

TimeStamp Event time and date Alphanumeric (YYYY-MM-DD HH:MM:SS)
2015-02-27
12:52:02

EventType
Type of event (see table
above) Alphanumeric (see EventType table below) StatusChange

UserID
User that caused the
event

Alphanumeric (LoginID) Admin

OldStatus
Status that was before
change

Alphanumeric (REGISTERED, SCANNED, MODELLED, CHECKED, MILLED,
MOUNTED, PRINTED or SHIPPED)

REGISTERED

NewStatus Status that is after
change

Alphanumeric (REGISTERED, SCANNED, MODELLED, CHECKED, MILLED,
MOUNTED, PRINTED or SHIPPED)

SCANNED

PrintJobName Name of print job Alphanumeric Job1

PrintJobType Type of print job Alphanumeric Beige

PrinterName Id of printer Alphanumeric Printer1

SiteID Id of site that initiated Alphanumeric MySite1

Page 10 of 11ShellManager API Guide: Integration with External Systems

29/05/2018file:///C:/Users/Oles%20Galatsan/AppData/Local/Temp/~hh2AE3.htm

The following table shows possible event types (each value in the first column is an actual value for EventType parameter in the URL
string):

Error Codes

The API returns predefined codes if an error occurs:

See also:
WSI, Structure, Input and Output, Command List

an event

EventType Description

StatusChange
Order status is changed. PrintJobName, PrintJobType and PrinterName is provided if new status is PRINTED or
MILLED.

OrderCreate New order has been created.

OrderDelete Existing order has been deleted.

OrderChange Order details have been updated.

OrderErrorMark Occurs when the user error marks the order.

TransferToRemoteSite The order has been sent (SWIFT) to a remote site.

TransferFromRemoteSite The order has been received (SWIFT) to a remote site.

RemakeCreate Remake order has been created.

GeometryAccept Obsolete

GeometryReject Obsolete

Error ID Type Description

1 ID exists Order already exists with the specified ID.

2 ID doesn't exist Order doesn't exist.

3 ID duplication Duplicate order with the same ID.

4 Not changeable Order does not support changing (i.e. unable to change status).

5 ID missing Referenced model error (i.e. faceplate model ID is not supplied).

6 Insert failed Duplicate model error (i.e. optional component already exists in order).

Page 11 of 11ShellManager API Guide: Integration with External Systems

29/05/2018file:///C:/Users/Oles%20Galatsan/AppData/Local/Temp/~hh2AE3.htm

